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 PART – A  

        
Answer ALL questions.                 (10 x 2 = 20 marks) 
 

1. Define Riemann integral. 
2. Give an example of a bounded function, which is not Riemann integrable over [0,1]. 

3. Find the Laplace transform of 
t
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4. Let X be a continuous random variable with p.d.f. 
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 Show that expectation of X does not exist. 
5. Solve the differential equation 

dyyxaydyxdx )( 22 +=+  

6. Solve the differential equation 
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7. Show that the system of equations 
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8. Verify Cayley – Hamilton theorem for the matrix  
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9. If the two dimensional random variable (X, Y) has the joint p.d.f 
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 find the marginal p.d.f of Y. 
10. Define variance – Covariance matrix of a random vector. 

 
PART – B 

           
Answer any FIVE questions.         (5 x 8 = 40 marks) 
     

11. Let xxf =)(  for 10 ≤≤ x  and 
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12. For a random variable X, E(x) = 10 and V(x) = 25. Find the positive values of a and b such that Y=ax-b 
has expectation zero and variance 1. 

13. The p.d.f of a continuous random variable is given as 

∞<<∞−= − xexf x ,)( 11

2

1  

Find M.G.F of x and hence find the mean and variance of x. 
14. Solve the following differential equation using Laplace Transform. 
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15. Show that the following system of equations is consistent and hence solve them. 
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16. Using the method of Laplace transform solve, 
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 given x(0)=0 and y(0)=0. 
 

17. The joint p.d.f of the random variables x and y is given by, 
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Find the marginal p.d.f’s of x and y Also find CoV(X,Y). 
18. Prove that the matrices A,B and C given below have the same characteristic roots. 
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PART – C 
     

Answer any TWO questions.                (2 x 20 = 40 marks) 
 

19. a) State and prove the first fundamental theorem of integral calculus. 
b) If the moments of x are defined by 

6.0][ =rxE  for r=1,2,3, ……. 

Show that P(x=0)=0.4; P(x=1)=0.6 
 P[x=x]=0, otherwise. 
 
 

20. a) Find the Laplace transforms of the following functions. 

(i) 
t

t2sin
      (ii) tt 2cos3cos 22 −  

b) Evaluate the following integrals. 
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21. a) The joint p.d.f of the random variable (X,Y) is  
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 Find the distribution of 
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22. a) Find all the characteristic roots and the associated characteristic vectors of the matrix 
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 b) Show that the system of equations 
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