\square Max. : 100 Marks

PART - A

Answer ALL questions.

(10 $\times 2$ = 20 marks)

1. Define Riemann integral.
2. Give an example of a bounded function, which is not Riemann integrable over $[0,1]$.
3. Find the Laplace transform of $\frac{\cos 3 t-\cos 2 t}{t}$
4. Let X be a continuous random variable with p.d.f.

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)},-\infty<x<\infty
$$

Show that expectation of X does not exist.
5. Solve the differential equation

$$
x d x+y d y=a\left(x^{2}+y^{2}\right) d y
$$

6. Solve the differential equation

$$
\left(D^{2}-3 D+2\right) y=e^{5 x}+2
$$

7. Show that the system of equations

$$
\begin{aligned}
& 3 x-4 y=2 ; 5 x+2 y=12 ;-x+3 y=1 \\
& \lambda s \text { consistent }
\end{aligned}
$$

8. Verify Cayley - Hamilton theorem for the matrix $\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$
9. If the two dimensional random variable (X, Y) has the joint p.d.f

$$
f(x, y)=\left\{\begin{array}{c}
\frac{2}{3}(x+2 y), 0<x<1,0<y<1 \\
o \quad, \quad \text { otherwise }
\end{array}\right.
$$

find the marginal p.d.f of Y.
10. Define variance - Covariance matrix of a random vector.

PART - B

Answer any FIVE questions.

11. Let $f(x)=x$ for $0 \leq x \leq 1$ and $\sigma_{n}\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots \ldots ., 1\right\}$ be a partition of $[0,1]$. Compute $\operatorname{lt}_{n \rightarrow \infty} U\left[f ; \sigma_{n}\right]$ and $\operatorname{lt}_{n \rightarrow \infty} L\left[f ; \sigma_{n}\right]$.
12. For a random variable $X, E(x)=10$ and $V(x)=25$. Find the positive values of a and b such that $Y=a x-b$ has expectation zero and variance 1 .
13. The p.d.f of a continuous random variable is given as

$$
f(x)={ }_{\frac{1}{2}} e^{-1 x 1}, \quad-\infty<x<\infty
$$

Find M.G.F of x and hence find the mean and variance of x .
14. Solve the following differential equation using Laplace Transform.

$$
\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+5 y=e^{-t} \text { given that } \mathrm{y}=0, \frac{d y}{d t}=o \text { when } \mathrm{t}=0
$$

15. Show that the following system of equations is consistent and hence solve them.

$$
\begin{array}{ll}
x=2 y-z=3 ; & 3 x-y+2 z=1 \\
2 x-2 y+3 z=2 ; & x-y+z=-1
\end{array}
$$

16. Using the method of Laplace transform solve,

$$
\begin{aligned}
& \frac{d x}{d t}+2 x-3 y=2 t \\
& \frac{d y}{d t}-3 x+2 y=e^{2 t}
\end{aligned}
$$

given $x(0)=0$ and $y(0)=0$.
17. The joint p.d.f of the random variables x and y is given by,

$$
f(x, y)= \begin{cases}e^{-(x+y)}, & x>0, \quad y>0 \\ 0 & , \text { otherwise }\end{cases}
$$

Find the marginal p.d.f's of x and y Also find $C_{o} V(X, Y)$.
18. Prove that the matrices A, B and C given below have the same characteristic roots.

$$
A=\left[\begin{array}{ccc}
0 & a & b \\
a & 0 & c \\
b & c & 0
\end{array}\right] ; \quad B=\left[\begin{array}{ccc}
0 & b & a \\
b & 0 & c \\
a & c & 0
\end{array}\right] \quad C=\left[\begin{array}{ccc}
0 & c & b \\
c & 0 & a \\
b & c & 0
\end{array}\right]
$$

PART - C

Answer any TWO questions.

19. a) State and prove the first fundamental theorem of integral calculus.
b) If the moments of x are defined by
$E\left[x^{r}\right]=0.6$ for $\mathrm{r}=1,2,3, \ldots \ldots$
Show that $\mathrm{P}(\mathrm{x}=0)=0.4 ; \mathrm{P}(\mathrm{x}=1)=0.6$

$$
P[x=x]=0 \text {, otherwise }
$$

20. a) Find the Laplace transforms of the following functions.

$$
\text { (i) } \frac{\sin ^{2} t}{t} \quad \text { (ii) } \cos ^{2} 3 t-\cos ^{2} 2 t
$$

b) Evaluate the following integrals.
(i) $\int_{0}^{\infty} \frac{x d x}{1+x^{b}}$
(ii) $\int_{0}^{\infty} e^{-x^{2}} d x$
21. a) The joint p.d.f of the random variable (X, Y) is

$$
f(x, y)=\left\{\begin{array}{lc}
\frac{1}{4} e^{\frac{-(x-y)}{2}}, & x>0, \quad y>0 \\
0 & , \quad \text { otherwise }
\end{array}\right.
$$

Find the distribution of $\frac{X-Y}{2}$
22. a) Find all the characteristic roots and the associated characteristic vectors of the matrix

$$
A=\left[\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]
$$

b) Show that the system of equations

$$
\begin{array}{lc}
x=2 y-z=3 ; & 3 x-y+2 z=1 \\
2 x-2 y+3 z=2 & ; \\
*-y+z=-1 \\
* * * * * * * * * *
\end{array}
$$

